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A method of complex orthogonal decomposition (COD) [1] is applied to the extraction
of modes from simulation data of multi-modal traveling waves in one-dimensional continua.

In applying COD, the first step is to express a real oscillatory signals yj = y(xj, t),
j = 1, . . . , M , where M is the number of sensors distributed on the structure or specemin,
as complex analytic signals zj(t), which are sampled N times to generate vectors zj =
[zj(t1) · · · zj(tN)]T . We build an M × N complex ensemble matrix Z = [z1 · · · zM ]T . We
then construct a complex Hermitian correlation matrix R = 1

N
ZZ̄T , where the bar indicates

complex conjugation. We find real eigenvalues λj and complex eigenvectors uj of R. The
eigenvalues and eigenvectors are referred to as complex orthogonal values (COVs) and modes
(COMs), respectively. The COVs, λj = djM/L, are proportional to the mean squared modal
amplitudes dj, where L is the length of the domain for one-dimensional media.

We can write the complex ensemble as Z = UQ, where U has columns of COD orthogonal
modes, and Q is the ensemble of complex orthogonal modal coordinates. If the modes in U

are normalized, then by complex orthogonality,

Q = ŪTZ

is the complex modal coordinate ensemble matrix, the rows of which are the samples of each
modal coordinate, qj(t), sampled at t = t1, . . . , tN .

From the modal coordinates in ensemble Q, frequency information can be obtained (e.g.
by FFT or complex whirl rate for nearly harmonic signals) for the wave components. Like-
wise, the wave number γj (2π over the wavelength) can be obtained from each of the complex
modes uj . The wave speed (phase velocity) of each wave component is then cj = ωj/γj.

1. Numerical Example: Two-Harmonic Wave

Complex wave modes were extracted from a two-wave simulation of a dispersive medium,
whose frequency, wavenumber, and phase velocity relationship matched the theory of an
infinite uniform Euler-Bernoulli beam. The wave had the form y(x, t) = A1 sin(γ1x− ω1t) +
A2 sin(γ2x − ω2t), where A1 = 1, A2 = 1/2, γ1 = 20 rad/m, and γ2 = 16 rad/m. Consistent
with Euler-Bernoulli theory for a steel beam with a Young’s modulus E = 200e9 N/m2,
rectangular-cross-sectional area moment of inertia I = bh3/12 with width b = 1 cm and
height h = 1 mm, and mass density ρ = 7860 kg/m3, the wave frequency is related to wave

number as ω = aγ2, where a =
√

EI/ρA = 1.4562 m/s. Therefore, ω1 = 582.4694 rad/s

and ω2 = 372.7804 rad/s in the simulation. This results in theoretical phase velocities of
c1 = 29.1235 and c2 = 23.2988 m/s. The theoretical group velocity between the two traveling
waves, according to cg = (ω2 − ω1)/(γ2 − γ1), is cg = 52.4222 m/s.

The simulation was conducted from t = ∆t to t = T = 0.2996 sec with a sampling time
of ∆t = 5.3936e−4 sec (or a sampling rate of about 1.85 kHz). There were M = 200 spatial
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samples spaced by ∆x = 1.57 cm in the medium, spanning x = 0 to x = L = 3.1416 m.
Six-bit noise was added to the displacement ensemble. This noise was uniformly distributed
in the interval [−ǫ, ǫ], where ǫ = 2−6 times the maximum recorded beam displacement, and
was generated by the Matlab command, ‘rand’.

COD was applied, and the modal coordinates were isolated. The modal frequencies were
estimated by fast Fourier transform (FFT) and from whirl rates, in the complex plane, of the
complex modal coordinates and the complex modal vectors. The modal frequency estimates
by whirl rate were ω1w = 584.9966 and ω2e = 375.5177 radians per second, and the estimated
wave numbers were γ1w = 20.0000 and γ2w = 16.0021 radians per meter. The resulting phase
velocity estimates were c1e = 29.2498 and c2e = 23.4668 m/s, and the group velocity estimate
was cge = 52.3803 m/s.

2. Numerical Example: A Disturbed Infinite Euler-Bernoulli beam

The simulated steel beam had the same cross-section parameters as in the above example.
The measurement interval was L = 1.6 m, and the spacing of the measurements was 1 cm. As
such, there were 160 virtual sensors. With this measurement geometry, sampling principles
imply that the minimum and maximum detectable wave numbers are γmin = 3.9270 rad/m
and γmax = 100π = 314.15 rad/m. Based on the relationship between phase velocity, wave
number, and frequency in an Euler-Bernoulli beam of the given geometry, the minimum and
maximum detectable wave frequencies are ωmin = 22.4560 rad/s and ωmax = 1.4372e + 05
rad/s (or 22.874 kHz).

The simulation took place at a sampling interval of ∆t = 3.5437e−05 seconds (or 28.216
kHz) for a time record duration of T = 0.2903 seconds, and the displacements were recorded
at uniform a spatial interval of ∆x = 1 cm. (For real experiments in our lab, our sampling
frequency will probably be lower, and therefore be the limit on detectable wave frequency
and wave number.) The initial conditions were given as a Gaussian distribution such that

y(x, 0) = f0e
−x2/4b2

0 , where parameters b = 1/100 m1/2 and f0 = 1 mm. The initial velocities
were zero. As such, the response of the beam is [2].

y(x, t) = 41/4f0bs
1/4(t)e−x2b2s(t) cos

(

atx2s(t) − φ(t)
)

(1)

where

s(t) =
1

4(b4 + a2t2)
, φ(t) = − tan−1 at

b2
. (2)

Random noise was added to each ensemble value. The noise was uniformly distributed
over the interval (−ǫ, ǫ), where ǫ = 2−6 times the largest value in the ensemble. Since the
largest value in the ensemble is considerably larger than most ensemble values, as a lot of
wave energy propagated off of the interval during the simulation, the noise level is quite
significant. The mean of each sampled point history was removed. COD was applied to the
complex ensemble, and the complex modes and complex modal coordinates were generated.

The spatial whirl rates of the complex modes were used to estimate wave numbers, and
the temporal whirl rates of the complex modal coordinates, in the time range for which
the oscillation persisted, were used to estimate frequencies. The estimated frequencies are
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Figure 1: (a) The frequency versus wave number for the extracted modes (◦ symbols) compared to the
theoretical curve (red line). (b) Group velocity versus wave number for the extracted modes (◦ symbols)
compared to the theoretical curve (black line).

plotted against the estimated wave numbers in the circle symbols in Figure 1(a) along with
the theoretical curve for the Euler-Bernoulli beam. These results are very similar to those
of the noise free case (not shown). Also, the group velocities were computed using a finite
difference approximation to the theory cg = dω/dγ [2], and are shown (circles) versus wave
number in Figure 1(b) with comparison to Euler-Bernoulli beam theory (solid line).
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